Ваш браузер устарел, поэтому сайт может отображаться некорректно. Обновите ваш браузер для повышения уровня безопасности, скорости и комфорта использования этого сайта.
Обновить браузер

Дыры в клетках как основа жизни

Белки, открывая проход от одной поверхности клеточной мембраны к другой, способствуют правильной зарядке клетки

23 июня 2021
Дыры в клетках как основа жизни
Ионные каналы представляют собой белковые структуры, встроенные в мембраны живых клеток. Они создают поры для транспорта ионов на поверхности мембран. Благодаря этому становится возможной возбудимость нервных клеток, передача нервных импульсов с нерва на мышцу и секреция гормонов. Блокирование ионного транспорта приводит к серьёзным нарушениям в организме.
Источник:
NIST

В медицинских новостях то и дело появляется информация о том, что учёные нашли очередной способ воздействия на ионные каналы — то они пытаются их активировать, то, наоборот, спешат блокировать. Например, совсем недавно были опубликовано сообщение об исследованиях профессора Тель-Авивского университета (Tel Aviv University) Майкла Гуревитца (Michael Gurevitz), который разрабатывает новое болеутоляющее на основе компонентов яда израильского жёлтого скорпиона — одного из самых опасных скорпионов в мире. Предполагается, что этот препарат будет воздействовать на натриевые каналы, которые отвечают за восприятие боли, и станет эффективным обезболевающим нового поколения. Об ионных каналах вспоминают, и когда речь заходит об онкологических заболеваниях , сердечно-сосудистых отклонениях и даже вредных пристрастиях. Так что же это за каналы и почему их работа так важна?

Клетка в дырку

Живая клетка — это не статичное образование, в ней постоянно происходит обмен веществ, ведь взаимодействие клеток друг с другом и внешней средой — необходимое условие для поддержания жизни организма. Обмен этот происходит через мембрану (оболочку) клеток, через которую при необходимости должны проникать многие элементы: ионы, аминокислоты, нуклеотиды.

Чтобы мембрана при необходимости могла быть проницаема для этих элементов, в ней есть специальные транспортные белки, которые образуют поры, своеобразные «дыры» в мембране. Эти поры представляют собой закупоренные молекулами воды каналы диаметром менее 1 нм, и эти мембранные каналы обладают относительной избирательностью по отношению к типу молекул, которые могут через них проходить. Есть, к примеру, кальциевые, натриевые, калиевые каналы — и они не пропускают другие ионы, кроме специфических. Такая избирательность канала обусловлена его зарядом и структурой.

Для проведения потока ионов через свою пору ионные каналы используют разность потенциалов. Так как возникающий при движении ионов ток можно измерить — причём даже для одиночного канала, за поведением мембранных ионных каналов легко наблюдать. Каналы спонтанно и часто открываются и закрываются. И эти переходы из одной формы в другую можно изучать методами рентгеновской дифракции, мёссбауэровской спектроскопии и ядерно-магнитного резонанса. Благодаря этим исследованиям стало ясно, что эти каналы — высокоорганизованные струтуры, не просто трубка с водой, а лабиринт быстро двигающихся электрически нейтральных и заряженных молекулярных групп.

Дыры в клетках как основа жизни
Японский деликатес — рыба фугу. Поскольку в ней содержится тетродоксин (яд, блокирующий натриевые каналы мембран нервных клеток), готовить это блюдо в Японии имеют право только повара, прошедшие курс обучения и получившие лицензию. Впрочем, сообщения об отравившихся фугу появляются в СМИ с завидной регулярностью.
Источник:
(Creative Commons license): Jason Walsh

Существуют десятки разновидностей ионных каналов. Самую большую группу составляют калиевые каналы, в которую входит около сорока видов. И каждая разновидность уникальна по своим структурным характеристикам и выполняемым функциям. Например, калиевые каналы большой проводимости (через них проходит бóльшее количество ионов калия, чем по другим каналам) состоят из круных фрагментов белка, субъединиц, свернутых в α-спираль. Их дополняют относительно короткие фрагменты, которые кроме первичной спиральной обладают также вторичной β-структурой. Они, в свою очередь, подразделяются на β-1, β-2, β-3 или β-4, каждая из которых придаёт каналу уникальные свойства. Например, β-4 делает канал устойчивым к блокатору ибериотоксину. Если же блокада канала осуществлена удачно, ток через канал проходить не будет.

Зачем вообще нужны эти высокоорганизованные «дыры» в клетках? Ионные каналы — это основа жизни. Они обеспечивают возбудимость нервной системы, передачу нервных импульсов с нерва на мышцу, секрецию гормонов. Активирование ионных каналов запускает каскады физиологических реакций, обусловливает наше мышление, работу сердечной мышцы и дыхательной диафрагмы, даже наши привязанности (например, к алкоголю ) и те современные учёные склоны объяснять особенностями работы ионных каналов.

Блокирование этих важных каналов приводит к серьёзнейшим изменениям в организме. И нет ничего удивительного в том, что ионные каналы стали основной мишенью для разработки новых ядов и химического оружия. Так, один из мощнейших нервнопаралитических ядов, известных человечеству, тетродотоксин, блокирует натриевые каналы. Благодаря большим размерам молекулы тетродотоксин буквально закупоривает пору натриевого канала, так что прохождение ионов натрия через неё становится невозможным, и нервный импульс не передаётся от клетки к клетке. Мышцы замирают — ведь они подчиняются сигналам нервной системы. Токсины сходного действия, например конотоксин, находятся в арсенале змей и морских моллюсков и помогают им парализовать жертву.

Ионные каналы в медицине

В медицине сегодняшнего дня целый ряд заболеваний объясняют нарушением в работе ионных каналов. Хотя они имеют совершенно разные пути лечения, общность их причин позволило выделить их в отдельную группу. Они включают как приобретенные, так и наследственные недуги.

Дыры в клетках как основа жизни
В 2003 году Нобелевская премия по химии была присуждена американскому учёному Родерику Маккиннону (Roderick McKinnon) за открытие структуры ионного канала. В 1998 году ему удалось кристаллографическими методами получить трёхмерную молекулярную структуру калиевого канала бактерии Streptomyces lividans.
Источник:
белка появилось на обложке журнала «Science», редакция которого посчитала открытие Маккиннона одним из десяти самых выдающихся научных достижений года. Этот белок состоит из 4 субъединиц, имеющих α-спиральное строение. Через полость в центре и переносится катион калия. Иллюстрация: BNL/DoE, Rockefeller University/Roderick MacKinnon 

Например, с нарушением функции целой группы ионных каналов, включая натриевые и калиевые, связывают развитие синдрома хронической усталости . Из наследственных заболеваний, вызванных нарушением функционирования ионных каналов, можно упомянуть эпилепсию, которая вызвана сбоями в работе калиевых каналов большой проводимости. Под руководством профессора Ричарда Алдрича (Richard Aldrich) из Техасского университета в Сан-Антонио (University of Texas at San Antonio) удалось доказать, ставя опыты на трансгенных мышах , у которых был заблокирован ген KCNMB4, что при недостаточном количестве бета4 субъединиц калиевый канал неадекватно отвечает на нервное возбуждение, что приводит к конвульсиям.

С недостаточной функцией β-1 субъединицы канала связывают развитие гипертонии. Если по какой-то причине аминокислотный состав белка β-1 субъединицы не соответствует норме, то канал с такой субъединицей не в состоянии поддерживать расширение стенкок сосудов, из-за чего возникает напряжение артерий и развивается гипертония. Об этом свидетельствуют, например, исследования Ральфа Кёлера (Ralf Köhler) из Университета Южной Дании (Syddansk Universitet).

Ещё одно широко распространённое сердечно-сосудистое заболевание — синдром удлинённого QT связывают с мутациями в генах, кодирующих калиевые каналы сердечной мышцы, которое приводит к усилению активности калиевых каналов и меняет нормальный поток калия в сердечной мышце.

Нарушения функций кальциевых каналов приводят к атаксиям — состояниям, при которых невозможна координация движений.

Наконец, муковисцидоз (или фиброзно-кистозная дегенерация) — тяжелейшее заболевание дыхательной системы и желудочно-кишечного тракта наряду с другими причинами связывают с мутациями в CFTR гене, кодирующем хлорный канал.

Так что нормальное функционирование ионных каналов любого типа исключительно важно для здоровья человека.

Взять каналы на прицел!

Сегодня фармацевты активно работают над созданием препаратов, воздействующих на них. Пожалуй, одни из самых популярных из существующих подобных препаратов, — антиаритмические средства, которые нормализуют нарушенный ритм сердечных сокращений. К ним относятся так называемые «антагонисты кальция» (например, верапамил), которые препятствуют проникновению ионов кальция из межклеточного пространства в мышечные клетки сердца и сосудов через медленные кальциевые каналы L-типа. Снижая концентрацию ионов кальция в клетках сердечной мыщцы и стенках сосудов, антагонисты кальция расширяют коронарные и периферические артерии.

Активаторы калиевых каналов (икорандил, миноксидил, диазоксид, пинацидил) тоже вызывают расширение коронарных сосудов и сосудов в периферических органах. Воздействовать на калиевые каналы пытаются и для остановки инсультов, вызванных спазмом сосудов головного мозга.

Дыры в клетках как основа жизни
Капсаицин в изобилии содержится в стручках перца чили. Благодаря  ему открываются ионные каналы TRPV1, через которые беспрепятственно проходят молекулы синтетического аналога лидокаина (QX-314). Эксперименты на животных уже показали, что капсаициновая модель доставки обезболивающего очень эффективна.
Источник:
(SXC license): Markku Pyymaki

Популярные в хирургической практике местные анестетики — лидокаин и новокаин блокируют ощущение боли путём закупорки натриевых каналов. Правда, побочный эффект этих препаратов состоит в том, что они приводят к потере не только болевой, но и тактильной чувствительности.

Однако удалось установить, что на помощь в такой ситуации могут прийти другие ионные каналы — так называемые TRP (Transient receptor potential). Это семейство каналов насчитывает множество видов, которые характеризуются слабой селективностью и пропускают большинство положительно заряженных ионов, включая натрий, кальций и магний.

Особая группа TRP каналов, которая расположена в нервных клетках, реагирующих на боль, чувствительна к присутствию активного компонента перца чили — капсаицину. Если активировать TRP каналы капсаицином, то последующее введение лидокаина будет избирательно блокировать только эти TRP каналы, то есть каналы, расположеные исключительно в болевых нейронах. Таким образом, можно будет избавиться от побочного действия обезболевающего.

Относительная простота тестирования работы ионных каналов и многообещающие результаты делают их привлекательной мишенью для фармацевтической индустрии. К тому же, многие ныне существующие препараты со временем теряют свою эффективность: организм привыкает к ним и реагирует не так, как задумывали создатели. Учёным приходится постоянно искать пути устранения различных сбоев, а ионные каналы — это, можно сказать, основа жизни. И сегодня манипуляции ими, с одной стороны, привлекают многомиллиардные инвестиции, а с другой — дают определённую надежду страдающим самыми разными недугами.

Подписываясь на рассылку вы принимаете условия пользовательского соглашения