Оно настигает внезапно и уничтожает на месте. Остаться в живых почти невозможно, когда появляется цунами — волна-убийца. Но, оказывается, цунами и волны-убийцы — абсолютно разные явления. «Убийцы», кстати, могут быть всего пару сантиметров высотой.

Фото №1 - Смерть под парусом

Столетиями моряки рассказывали о неожиданно возникающих гигантских волнах, способных потопить корабль. Ученые не воспринимали эти истории всерьез. До самых недавних пор некоторые океанологи отрицали существование громадных волн-убийц в открытом море, считая недостоверными свидетельства перепуганных очевидцев. Из-за углубления, которое всегда предшествует волне, возникает ощущение большей, чем на самом деле, высоты водной гряды. Это ощущение усиливается еще и тем, что корабль располагается не горизонтально, то есть параллельно подошве волны, а наклонен к ней. В итоге высота может сильно преувеличиваться.

Но с началом добычи нефти из морского шельфа появилась объективная информация: приборы на буровых платформах стали время от времени фиксировать приход одиночной гигантской волны, резко превышающей средний уровень волнения. Подобные всплески систематически наблюдаются сейчас и спутниками, осуществляющими мониторинг океана.

Волны-убийцы изучает ведущий научный сотрудник Нижегородского ГТУ Ирина Диденкулова .

В чем разница между цунами и волнами-убийцами?

У них разный масштаб, и характер появления разный. Источник цунами — землетрясение или оползень. От цунами очень много разрушений. Волны-убийцы отличаются от обычных волн только амплитудой. Их опасность — в неожиданности .

Цунами легче прогнозировать. Во всяком случае, те цунами, что вызваны землетрясениями: происходит землетрясение, дальше оцениваются его параметры. На основе этих расчетов смотрят, какая может быть сгенерирована волна цунами, и моделируют распространение этой волны. Затем — по мере распространения волны — численные расчеты сравнивают с данными буев, через которые эта волна проходит. В результате расчетные данные уточняются. Это можно сделать быстро и успеть предупредить жителей всех побережий, которые затронет цунами. Но это с цунами от землетрясений. А, например, для цунами, вызванных оползнями, точных прогнозов пока не делается.

Стоит ли ждать реально работающей системы прогноза цунами и волн-убийц?

Никакая система не может стартовать мгновенно. Она придумана, теперь ее надо тестировать, переводить в штатный режим. Думаю, нам потребуется лет пять как минимум.

Фото №2 - Смерть под парусом

Маяк рядом с островом Уэссан (на выходе из пролива Ла-Манш) — почти 50 метров высотой. Однако некоторые волны накрывают его практически полностью

Где стоит опасаться одиночных волн, только в открытом море?

Не только — возникать они могут как в открытом море, так и вблизи берега и даже на берегу. Я как раз больше интересуюсь именно последними двумя разновидностями. «Волна-убийца» — вполне конкретный термин. Это волна, высота которой в два раза превышает значительную высоту волны (некую величину, характерную для данного состояния моря, среднее от 1/3 самых высоких волн). То есть это просто необычный выброс — он может быть как в земном океане, так и в атмосфере Солнца.

Получается, при безветрии и штиле волна-убийца может быть всего два сантиметра высотой?

С точки зрения статистики да, это так. Но когда речь идет не о науке, а еще и о безопасности, то учитываются, конечно, дополнительные условия: например, волна не должна быть ниже стольких-то метров. Для прогнозов это второе условие особенно важно и должно применяться с учетом устойчивости каждого конкретного объекта. Для одной прибрежной конструкции она будет одной, а для наземной — совсем другой, и для разных кораблей тоже будет различаться.

Фото №3 - Смерть под парусом

Компьютерное моделировании энергии океанских волн. По-разному окрашенные области — результирующие примерно 500 тысяч одиночных волн, движущихся через локальные завихрения. Все это создает конвергенцию (рефракцию) волн, в которой и могут родиться волны-убийцы

Математические модели нужно проверять. Как строятся ваши наружные эксперименты?

Экспериментальный бассейн в нашей лаборатории мы пока строим, но я работала в других — в английском и немецком. Как правило, это длинный канал, заканчивающийся береговым модулем. По такому каналу мы гоним волну и смотрим, что с ней происходит на берегу. Особенно интересно было работать в огромном 300-метровом Ганноверском бассейне. Это как раз тот случай, когда размер имеет значение. От генератора волн до «берега» мне приходилось ездить на велосипеде, пешком довольно долго, а я, признаться, как-то с велосипедами не очень дружу — боялась. Но к концу эксперимента уже освоилась.

Натурные эксперименты мы тоже проводили прямо на берегу. Там схема работы похожая. Измеряем волну на каком-то расстоянии от суши и на берегу. Из инструментов используем эхолоты, датчики давления, а на берегу очень часто ставим камеры высокого разрешения или видеокамеры, по которым потом можно отследить динамику каждой конкретной волны.

ПРЕМИЯ
Женское это дело

Ирина Диденкулова , рассказавшая «Вокруг света» про волны-убийцы, пару месяцев назад получила престижную международную стипендию как перспективный исследователь. В конце марта в Париже прошла 18-я торжественная церемония награждения премиями L’Oréal-UNESCO «Для женщин в науке». Награды (это, помимо почетных знаков, крупные денежные премии) получили пять известных женщин-ученых, в том числе Эммануэль Шарпантье и Дженнифер Дудна за технологию редактирования генома CRISPR/Cas9 , которая произвела революцию в геномном инжиниринге.

После награждения, генеральный директор ЮНЕСКО Ирина Бокова и президент и председатель правления группы L’Oréal Жан-Поль Агон объявили о выпуске манифеста «Для женщин в науке». Он призывает бороться с недостаточной представленностью женщин в научных сообществах. Подписать его можно на сайте проекта.

Программа L’Oréal-UNESCO «Для женщин в науке» создана в 1998 году для поддержки женщин-ученых по всему миру. Премии, а также международные и национальные стипендии для продолжения научной карьеры уже получили более 2500 исследовательниц из 112 стран.

И все же с трудом верится, что появление волн-убийц вообще можно прогнозировать…

Тут есть два подхода . Один состоит в том , чтобы отслеживать условия, в которых образование волны-убийцы наиболее вероятно. Определение таких условий и есть главная задача, для решения которой нужно учитывать результаты численных и лабораторных экспериментов, механизмы возбуждения волн-убийц, а также данные натурных наблюдений. Задача сложная, так как механизмов довольно много и они могут накладываться друг на друга. Волны-убийцы способны формироваться путем сложения нескольких волн, когда они догоняют друг друга или приходят с разных направлений (иногда даже более чем с двух), за счет взаимодействия с течениями, берегом, друг с другом, а также в результате собственной естественной эволюции. При развитии такого подхода мы сможем оповещать людей о высокой вероятности встречи с волной-убийцей в данном регионе.

Другой же подход состоит в том, чтобы инструментально засечь волну-убийцу на достаточном расстоянии от охраняемого объекта (будь то прибрежная инфраструктура или судно) и в кратчайшее время предсказать ее дальнейшее поведение. Причем сделать это в кратчайшие сроки, чтобы в случае необходимости успеть провести эвакуацию людей из опасной зоны или совершить маневр судна. Это уже срочный прогноз, и тут речь идет не о вероятности, а о конкретной приближающейся угрозе. В моей группе мы работаем над развитием обоих этих подходов.

Фото №4 - Смерть под парусом

Движение цунами, порожденного японским землетрясением 11 марта 2011 магнитудой до 9,0. Высота волны маркирована цветами от желтого (небольшая) до черного (большая, до 7 метров). Цунами пересекло весь Тихий океан примерно за 20 часов

Чего же удалось достичь?

Мне как-то приснился кошмар: у меня защита, передо мной комиссия, и они меня строго спрашивают: «А что ты сделала нового в науке?» И холодный пот по спине. Если серьезно, то я думаю, что самые интересные результаты у нас по волнам-убийцам. Вообще, наша заслуга в том, что мы продемонстрировали со всей определенностью — у берега тоже бывают волны-убийцы . Да и продвинулись мы за последнее время в этой области очень существенно. Если еще несколько лет назад не было толком понятно, когда, откуда и почему они берутся, то сейчас акцент уже сместился в сторону прогноза, а значит, недалек тот день, когда мы сможем их предсказывать.

СПАСАЙСЯ КТО МОЖЕТ!
Самые опасные места на Земле

11 лет назад, 26 декабря 2004 года , в результате землетрясения с магнитудой выше 9,0 в Индийском океане сформировалось цунами , которое убило почти четверть миллиона человек в прибрежных районах. Между тем с геологической точки зрения это было среднее бедствие с высотой волны всего в 30 метров. Разница между цунами и мегацунами — в источнике. Обычное цунами вызывается сильными землетрясениями, смещающими океаническое дно. Для образования мегацунами необходим крупный обвал или оползень в воду.

Единственное зарегистрированное человеком мегацунами случилось 9 июля 1958 года в заливе Литуя на Аляске. В результате крупного землетрясения с магнитудой около 8 в этот залив длиной больше 10 км и средней шириной 3 км, обрушилась масса из пород и льда, и на противоположный берег выплеснулась волна высотой 524 м. Оползневые процессы активизируются при изменении уровня водных бассейнов, когда склоны становятся неустойчивыми. А это именно то, чего можно ожидать в связи с глобальным потеплением.

Фото №5 - Смерть под парусом

Суматра

Участок гигантского Зондского желоба у берегов Суматры (Индонезия) полностью взведен и готов «выстрелить». Когда это случится, произойдет мощное землетрясение магнитудой до 8,8, а также возникнет цунами высотой 5–6 м. Разрушительные волны за 30 минут достигнут индонезийского города Паданг с населением около миллиона человек.

Фото №6 - Смерть под парусом

Зона субдукции Каскадия

Разлом Каскадия протянулся вдоль западного побережья Северной Америки более чем на тысячу километров к северу от Калифорнии до середины канадского острова Ванкувер. В 1700 году в разломе произошла подвижка, вызвавшая землетрясение магнитудой около 9,0. Крупное землетрясение сопоставимого масштаба с высокой вероятностью случится в ближайшие полвека, вызвав опустошительное цунами.

Фото №7 - Смерть под парусом

Пуэрториканский желоб

Проходит по стыку Карибской плиты и Североамериканской плиты. Это самая глубоководная часть бассейна Атлантического океана, достигающая глубины более 8 км. В ходе подводных съемок обнаружили там множество гигантских оползней, вызванных древними землетрясениями. Есть опасения, что колоссальное землетрясение и оползень породят цунами, грозящее разрушениями по всему Карибскому бассейну.

Фото №8 - Смерть под парусом

Гренландия

Восемь тысяч лет назад землетрясение из-за таяния Скандинавского ледникового щита породило оползень Стурегга у берегов Норвегии, цунами захлестнуло Шетландские острова и Шотландию. Гренландский ледник толщиной 2–3 км тает в ускоряющемся темпе. Его вес десятки тысяч лет сковывал разломы, и теперь они могут прийти в движение. Вызванные этим землетрясения спровоцируют оползни, подобные Стурегга. А те породят цунами по всей Атлантике.

Фото: AGE / Legion-media, Solent News, SPL, Alamy (x2) / Legion-media, iStock (x2), SPL / Legion-media

Материал опубликован в журнале «Вокруг света» № 6, июнь 2016