В начале сентября этого года стало известно об интересном и важном исследовании, выполненном двумя американскими астрономами. Его результаты скоро будут опубликованы в Записках Королевского астрономического общества (
Авторы исследования утверждают, что
По всей видимости, невозможность бесконечно наращивать массу обеспечивается интенсивным излучением от падающего в черную дыру вещества. По образному выражению штатного комментатора из журнала
Сама Натараджан считает, что обнаруженное ими явление представляет в совершенно новом свете значение этих экзотических космических объектов в эволюции Вселенной. «Давно уже накапливаются данные о той ключевой роли, которую черные дыры играют в процессе формирования галактик, — приводит ее слова пресс-релиз Йельского университета, — но теперь становится ясно: они подлинные примадонны этой космической оперы».
История изучения черных дыр — превратившихся в течение ХХ столетия из объекта размышлений физиков-теоретиков в предмет исследований наблюдательной астрономии — впечатляющий пример смены парадигм в естественных науках. Парадигму Ньютона, предполагавшую исследование в первую очередь неизменных во времени объектов Природы, окончательно и бесповоротно сменила эволюционная парадигма; мы с полным основанием можем называть её парадигмой Дарвина.
Черные дыры на земле и в небе
В последние годы термин «черная дыра» получил очень широкое признание в обыденной жизни, и его применяют порой в самых неожиданных значениях. И даже стало как-то постепенно забываться, что пришел он из космологии, где его впервые использовал один из самых известный астрофизиков ХХ века Джон Уилер (
Само представление о космическом теле, который в принципе нельзя увидеть, совсем не юное. Гипотетический космический объект, масса и гравитационное поле которого столь велики, что его не может покинуть даже свет, был впервые описан британским геологом и астрономом-любителем Джоном Митчеллом (
Митчелл исходил из предположения, что сила тяготения действует на свет так же, как и на обычные массивные тела. Спустя некоторое время и Лаплас (
Идея вернулась в физику только после появления в 1915 году релятивистской теории гравитации — общей теории относительности (ОТО) Альберта Эйнштейна (Albert Einstein, 1879–1955). Год спустя немецкий теоретик Карл Шварцшильд (
Весьма важная для понимания процесса формирования черных дыр работа была опубликована в 1939 году Робертом Оппенгеймером (
Но и после 1939 года черная дыра рассматривалась как занятная выдумка высоколобых теоретиков. Только в 1970-х Стивен Хокинг (
Хокинг показал, что гравитационное поле черной дыры (в особенности, очень маленькой черной дыры) не только очень сильное, но и очень переменное. И тогда даже очень маленькое расстояние, разделяющее родившиеся одновременно из вакуума частицу и античастицу, окажется достаточным, чтобы эти частицы не смогли больше исчезнуть. Точнее, одна из них исчезает в черной дыре, но вторая — покидает её, унося с собой некоторую энергию, а следовательно, и часть массы черной дыры. Эта работа Хокинга привела к тому, что образ черной дыры изменился кардинально: она перестала восприниматься как объект с неизменными во времени свойствами.
Реальная жизнь черных дыр
Квантовая теория черных дыр привела к тому, что в реальном их существовании больше почти никто не сомневался. У них появились все необходимые для жизни космического объекта атрибуты — масса, размер, температура, заряд, время жизни… Они могли возрастать и уменьшаться, их стали делить на разновидности от сверхмассивных, с массой от сотен тысяч до миллиардов солнечных масс, до квантовых микродыр, с массой в доли грамма.
Радиус черной дыры связан с её массой линейной зависимостью, а её температура, согласно Хокингу, обратно пропорциональна массе. К примеру, черная дыра с массой в пять масс солнца имеет температуру около 12 нК, что много меньше 2,7 К — температуры наполняющего космическое пространство реликтового излучения . Подобная «холодная» дыра получала бы больше энергии от окружающего её «горячего» пространства, нежели отдавала бы за счет хокинговского излучения. Для супермассивных дыр, температура которых исчезающее мала, пренебрежимо малым будет и процесс испарения, в то время как для квантовых черных дыр оно происходит с очень высокой интенсивностью.
Черная дыра не может жить вечно; для нее время жизни, согласно расчетам, прямо пропорционально кубу массы. При этом исчезновение квантовых микродыр с крайне малым временем жизни должно сопровождаться сильными вспышками гамма-излучения. Так, черная дыра весом с автомобиль (относящаяся к виду квантовых микродыр) испарилась бы в течение одной наносекунды, причем в процессе испарения её светимость в 200 раз превысила бы светимость Солнца. А черная дыра массой порядка 10–24 кг испарилась бы за время меньше 10–88 с. При всем том описывать поведение черных дыр такой массы мы сможем, лишь когда в распоряжении физиков появится теория квантовой гравитации, объединяющая квантовую механику и общую теорию относительности. Однако эта теория ещё не создана.
Добавим к этому, что, кроме температуры, у черной дыры есть только масса, заряд и момент импульса. Две черные звезды, у которых совпадают три последние характеристики, считаются неразличимыми. С другой стороны, исходная звезда, коллапс которой породил черную дыру, характеризуется огромным числом параметров. Исчезновение соответствующей информации в процессе формирования черной дыры не имеет адекватного объяснения; в астрофизике в связи с этим сформировалось понятие об «информационном парадоксе черной дыры» (
Из четырех видов черных дыр только те из них, чья масса не многократно превышает солнечную, образуются «классическим» путем, то есть в результате гравитационного коллапса. Наибольшее же внимание физиков в настоящее время привлекают процессы формирования и эволюции самых маленьких и самых больших черных дыр: квантовых и сверхмассивных. При этом в существовании сверхмассивных черных дыр убеждено большинство астрономов; что же касается квантовых микродыр, то, в соответствии с некоторым теоретическими моделями, они могут рождаться в результате флуктуаций гравитационного поля в момент Большого взрыва, а также при взаимодействии космических лучей с земной атмосферой. В 2008 году
Что же касается сверхмассивных черных дыр, то они «вырастают» из черных дыр меньшей массы прежде всего в ходе их слияния со звездами. Увеличивать свою массу черная дыра может, поглощая, к примеру, газ соседней звезды. Такой процесс называют аккрецией . В процессе падения на звезду газ может закручиваться, и тогда вокруг черной дыры формируется так называемый
Туманности и облака межзвездного газа для такого излучения практически прозрачны. Конечно, источники рентгеновского и гамма-излучения могут иметь и другую природу — прежде всего, нейтронные звезды. Но когда ультрарелятивистские частицы бомбардируют твердую поверхность, возникают нерегулярные рентгеновские и гамма-вспышки. Отсутствие таких вспышек в окрестности массивных и сверхплотных космических объектов позволяет с высокой степенью вероятности предположить, что мы имеем дело с черной дырой. Однако такого рода доказательства не всех удовлетворяют. Как отметил в интервью журналу
Беспредельная тяжесть
Подавляющее большинство астрономов убеждено, что сверхмассивные черные дыры расположены в центральной части всех больших галактик. Не является исключением и наша галактика Млечный Путь . Для проверки этой гипотезы активно используются телескопы на Гавайах и орбитальный телескоп Хаббла (
Как удается астрономам оценить массу столь удаленного от Земли объекта? Данные наблюдений позволяют с высокой степенью вероятности предположить, что в данном случае речь идет о системе из двух черных дыр , напоминающей двойную звезду. По эллиптической траектории и с периодом обращения 12 лет вокруг рассматриваемой сверхмассивной черной дыры обращается другая, меньшая по массе («всего лишь» 10 миллионов солнечных масс). Центральная черная дыра окружена при этом аккреционным диском; пересечение его дважды за период меньшей черной дырой сопровождается мощными выбросами рентгеновского излучения. Соответствующие вспышки регистрируются на Земле с помощью рентгеновских телескопов . Однако наиболее убедительным свидетельством справедливости модели «двойной черной дыры» стала прецессия орбиты.
Напомним, что одним из достижений ОТО было объяснение наблюдаемой астрономами
Как это ни парадоксально, сам Валтонен сомневается в расчетах, утверждая, что они основываются на информации о скоростях, с которыми вблизи черных дыр движутся облака газа — в то время как остается не до конца выяснен вопрос о том, действительно ли эти облака вращаются вокруг дыры, или просто движутся в её окрестности.
Открытие финских астрономов неизбежно подводит нас к вопросу о том, существует ли в природе какое-либо ограничение на возможные значения масс черных дыр? Рассказывая об открытии Маури Валтонена, журнал New Scientist приводит реплику Крэйга Уилера (Craig Wheeler) из Техасского университета (
Однако не все согласны со столь категоричным заявлением известного астрофизика. На сегодняшний день есть несколько исследовательских групп, которые надеются обнаружить механизм, ограничивающий рост сверхмассивных черных дыр. И вполне вероятно, что за публикацией Натараджан и Трейстера последуют другие, либо оспаривающие предложенную ими модель, либо предлагающие альтернативную.